

One of the most powerful features of M is that you can write custom functions to re-use
part of your code. Custom functions can be single or multiple liner, they will be written in
Lambda style syntax. In this post you will learn how to write functions and invoke them in
M.

Basic Syntax
Functions in M can be written in this format:

(x) => x+1
This is lambda syntax (that previously used in LINQ if you come from .NET development
background). the line above is equal to pseudo-code below:

Function anonymouss (x)
{
return x+1
}

As you see lambda made it much simpler to define the function with just that single line.
So, the function above gets a parameter from input and adds 1 to it. Please note that
datatype of parameter not defined, so that means if a text be an input, then an error would
occur, so you would require to do error handling as well.

So, let’s see how this function works and how we can call this function. script below shows
how to define the function and invoke it with a parameter:

let
 Add = (x) => x+1
in
 Add(10)

Result of above expression is: 11

In example above we’ve named the function as "Add" and then we simply call that with
Add(inputparam).

Parameters
If you want to define a function with more parameters, then simply add parameters as
below:

(x,y,z) => x+y+z
you can also define a function without parameters, as below:

() => "sample function without parameter"
This function gets no parameters and returns the text "sample function without
parameter".

Optional Parameters
parameters are defined as Required by default. that means you should specify the
parameter at the time of invoking function. So if you want to define an optional parameter,
use the Optional keyword as below:

let
 Func = (optional x) => if x is null then "nothing" else x
in
 Func(5)

Variables in Function
samples above showed how to write single line expression function, but in most of the
cases you would require to write multiple line function that contains variables inside the
function. in that case you can define the function within the LET / IN structure as below:

let
 Func = (x) =>
 let
 <body>
 in
 <return value>
in
 Func(5)

As you see in the above script another set of Let/In added inside the function. you can
write body of function in the LET clause. and if you want to add multiple lines there, or if
you want to define variables, do this as usual with a single comma at the end of each line.
Finally, you can return value in the IN clause.

Example
following example show how we can use structure above to create a function that return
number of days passed till a date from start of the year.

let
DayPassedInYear = (x) =>

 let
 MonthList=List.Numbers(1,Date.Month(DateTime.FromText(x))-1),
 Year=Date.Year(DateTime.FromText(x)),
 DaysInMonthList=List.Transform(MonthList,

 each Date.DaysInMonth(
 DateTime.FromText(Text.From(Year)&"-"&Text.From(_)&"-01")
)
)

 in
 Date.Day(DateTime.FromText(x))+List.Sum(DaysInMonthList)
in

 DayPassedInYear("5/14/2014")

We used Let to define a multi-line body. the first line of body is defining a variable that
creates list of Month numbers from the first month (1) to the previous month of the input
date. for calculating the previous month of the input date we used this
expression: Date.Month(DateTime.FromText(x))-1 .
and this part generates a list based on numbers from a beginning number (1) to ending
number (which would be result of previous month function): List.Numbers(1,….)

So as a result, the MonthList would be a variable that contains list of months from the first
month up to prior month in the current year. Let’s see how that single line would return
result:

Next line in the script calculates year of the input date and store that into a variable named
"Year":

Year=Date.Year(DateTime.FromText(x)),
Consider that you should end each line with a single comma (if you don’t want to logic of
two line to be parsed together).

The final line of the body combined from multiple expressions, I’ll describe the one by one;

DateTime.FromText(Text.From(Year)&"-"&Text.From(_)&"-01")
Above expression will return first day of a month. Please note that there is a single
underscore in the expression. that underscore would be used in EACH expression. EACH
is a single parameter function. we used EACH in this example to apply a transformation to
every item in the list. actually we want to replace each month number in the list, with the
number of days in that month. So we use EACH single liner function to fetch number of
days in that month. when you use EACH, you can use underscore as the parameter marker.
In simpler words if you have a list as below:

ListA
1
2
3
and if you transform that list with List.Transform function as below:

List.Transform(ListA,each _*10)
Result would be:

ListA
10
20
30

So, the result of This line below:
 DaysInMonthList=List.Transform(MonthList,each
Date.DaysInMonth(DateTime.FromText(Text.From(Year)&"-"&Text.From(_)&"-01")))

Would be:

As you see each list item which had the month number earlier, now replaced (transformed)
with number of days in that month.

In the final step of the function, we return the result;
 in
 Date.Day(DateTime.FromText(x))+List.Sum(DaysInMonthList)

IN clause used to return the result, and we use Date.Day function to return the day part
of input date. and we add that with sum of all values form the list. as a result, we would
see number of days passed from the first of year to the input date.

Summary
In this lab, you’ve learned how to define functions and how to invoke them. you’ve learned
that you can define optional or required parameters. you can also define multi-line
functions that contains variables inside the body. you’ve seen a sample function that
shows how useful are functions in real world. you’ve also learned about each keyword
which can be used as a single parameter function (especially in lists and tables).

